Компьютеры

Ремонт и upgrade компьютеров своими руками

КОМПЬЮТЕРНАЯ ПАМЯТЬ ТИПА DRAM

 

Если у вас появятся вопросы, не освещенные на нашем сайте, вы можете задать вопрос непосредственно нашим специалистам по электронной почте: upgradecomputer@yandex.ru

 

  

 

Динамическая оперативная память (Dynamic RAM — DRAM) используется в большинстве систем оперативной памяти современных персональных компьютеров. Основное преимущество памяти этого типа состоит в том, что ее ячейки упакованы очень плотно, т. е. в небольшую микросхему можно упаковать много битов, а значит, на их основе можно построить память большой емкости.

Ячейки памяти в микросхеме DRAM — это крошечные конденсаторы, которые удерживают заряды. Именно так (наличием или отсутствием зарядов) и кодируются биты. Проблемы, связанные с памятью этого типа, вызваны тем, что она динамическая, т. е. должна постоянно регенерироваться, так как в противном случае электрические заряды в конденсаторах памяти будут «стекать» и данные будут потеряны. Регенерация происходит, когда контроллер памяти инфраструктуры берет крошечный перерыв и обращается ко всем строкам данных в микросхемах памяти. Большинство систем имеют контроллер памяти (обычно встраиваемый в набор микросхем системной платы), который настроен на соответствующую промышленным стандартам частоту регенерации, равную 15 мкс. Ко всем строкам данных обращение осуществляется по прохождении 128 специальных циклов регенерации. Это означает, что каждые 1,92 мс (128x15 мкс) прочитываются все строки в памяти для обеспечения регенерации данных.

Регенерация памяти, к сожалению, отнимает время у процессора: каждый цикл регенерации по длительности занимает несколько циклов центрального процессора. В старых компьютерах циклы регенерации могли занимать до 10% (или больше) процессорного времени, но в современных системах, работающих на частотах, равных сотням мегагерц, расходы на регенерацию составляют 1% (или меньше) процессорного времени. Некоторые инфраструктуры позволяют изменить параметры регенерации с помощью программы установки параметров CMOS, но увеличение времени между циклами регенерации может привести к тому, что в некоторых ячейках памяти заряд «стечет», а это вызовет сбои памяти. В большинстве случаев надежнее придерживаться рекомендуемой или заданной по умолчанию частоты регенерации. Поскольку затраты на регенерацию в современных компьютерах составляют менее 1%, изменение частоты регенерации оказывает незначительное влияние на характеристики компьютера. Одним из наиболее приемлемых вариантов является использование для синхронизации памяти значений по умолчанию или автоматических настроек, заданных с помощью Setup BIOS. Большинство современных систем не позволяют изменять заданную синхронизацию памяти, постоянно используя автоматически установленные параметры. При автоматической установке системная плата считывает параметры синхронизации из инфраструктуры обнаружения последовательности в ПЗУ (serial presence detect — SPD) и устанавливает частоту периодической подачи импульсов в соответствии с полученными данными.

В устройствах DRAM для хранения одного бита используется только один транзистор и пара конденсаторов, поэтому они более вместительны, чем микросхемы других типов памяти. В настоящее время имеются микросхемы динамической оперативной памяти емкостью 512 Мбайт и больше. Это означает, что подобные микросхемы содержат более 256 млн транзисторов! А ведь Pentium 4 имеет только 42 млн транзисторов. Откуда такая разница? Дело в том, что в микросхеме памяти все транзисторы и конденсаторы размещаются последовательно, обычно в узлах квадратной решетки, в виде очень простых, периодически повторяющихся структур, в отличие от процессора, представляющего собой более сложную схему различных структур, не имеющую четкой организации.

Транзистор для каждого одноразрядного регистра DRAM используется для чтения состояния смежного конденсатора. Если конденсатор заряжен, в ячейке записана 1; если заряда нет — записан 0. Заряды в крошечных конденсаторах все время стекают, вот почему память должна постоянно регенерироваться. Даже мгновенное прерывание подачи питания или какой-нибудь сбой в циклах регенерации приведет к потере заряда в ячейке DRAM, а следовательно, и к потере данных. В работающей системе подобное приводит к появлению «синего» экрана, глобальным отказам инфраструктуры защиты, повреждению файлов или к полному отказу инфраструктуры.

Динамическая оперативная память используется в персональных компьютерах; поскольку она недорогая, микросхемы могут быть плотно упакованы, а это означает, что запоминающее устройство большой емкости может занимать небольшое пространство. К сожалению, память этого типа не отличается высоким быстродействием, обычно она намного «медленнее» процессора. Поэтому существует множество различных типов организации DRAM, позволяющих улучшить эту характеристику.


КЭШ-ПАМЯТЬ — SRAM

Существует тип памяти, совершенно отличный от других, — статическая оперативная память (Static RAM — SRAM). Она названа так потому, что, в отличие от динамической оперативной памяти (DRAM), для сохранения ее содержимого не требуется периодической регенерации. Но это не единственное ее преимущество. SRAM имеет более высокое быстродействие, чем динамическая оперативная память, и может работать на той же частоте, что и современные процессоры.

Время доступа SRAM не более 2 не; это означает, что такая память может работать синхронно с процессорами на частоте 500 МГц или выше. Однако для хранения каждого бита в конструкции SRAM используется кластер из шести транзисторов. Использование транзисторов без каких-либо конденсаторов означает, что нет необходимости в регенерации. (Ведь если нет никаких конденсаторов, то и заряды не теряются.) Пока подается питание, SRAM будет помнить то, что сохранено. Почему же тогда микросхемы SRAM не используются для всей системной памяти? Ответ можно найти в следующей таблице.

Тип     Быстродействие Плотность Стоимость

Динамическая оперативная память — DRAM Низкое  Высокая Низкая

Статическая оперативная память — SRAM Высокое  Низкая Высокая

По сравнению с динамической оперативной памятью быстродействие SRAM намного выше, но плотность ее гораздо ниже, а цена довольно высока. Более низкая плотность означает, что микросхемы SRAM имеют большие габариты, хотя их информационная емкость намного меньше. Большое число транзисторов и кластеризованное их размещение не только увеличивает габариты микросхем SRAM, но и значительно повышает стоимость технологического процесса по сравнению с аналогичными параметрами для микросхем DRAM. к примеру, емкость модуля DRAM может равняться 64 Мбайт или больше, в то время как емкость модуля SRAM приблизительно того же величины составляет только 2 Мбайт, причем их стоимость будет одинаковой. Таким образом, габариты SRAM в среднем в 30 раз превышают размер динамической оперативной памяти, то же самое можно сказать и о стоимости. Все это не позволяет использовать память типа SRAM в качестве оперативной памяти в персональных компьютерах.

Несмотря на это, разработчики все-таки применяют память типа SRAM для повышения эффективности PC. Но во избежание значительного увеличения стоимости устанавливается только небольшой объем высокоскоростной памяти SRAM, которая используется в качестве кэш-памяти. Кэш-память работает на тактовых частотах, близких или даже равных тактовым частотам процессора, причем обычно именно эта память непосредственно используется процессором при чтении и записи. Во время операций чтения данные в высокоскоростную кэш-память предварительно записываются из оперативной памяти с низким быстродействием, т. е. из DRAM. Еще недавно время доступа динамической оперативной памяти было не менее 60 не (что соответствует тактовой частоте 16 МГц). Для преобразования времени доступа из наносекунд в мегагерцы используется следующая формула:

1/наносекунды х 1000 = МГц.

В свою очередь, обратное вычисление осуществляется с помощью такой формулы:

1/МГц х 1000 = наносекунды.

Когда процессор персонального компьютера работал на тактовой частоте 16 МГц и ниже, DRAM могла быть синхронизирована с системной платой и процессором, поэтому кэш был не нужен. Однако как только тактовая частота процессора поднялась выше 16 МГц, синхронизировать DRAM с процессором стало невозможно, и именно тогда разработчики начали использовать SRAM в персональных компьютерах. Это произошло в 1986–87 годах, когда появились PC с процессором 386, работающим на частотах 16 и 20 МГц. Именно в этих персональных компьютерах впервые нашла применение так называемая кэш-память, т. е. высокоскоростной буфер, построенный на микросхемах SRAM, который непосредственно обменивается данными с процессором. Поскольку быстродействие кэша может быть сравнимо с быстродействием процессора, контроллер кэша может предугадывать потребности процессора в данных и предварительно загружать важные данные в высокоскоростную кэш-память. Тогда при выдаче процессором адреса памяти данные могут быть переданы из высокоскоростного кэша, а не из оперативной памяти, быстродействие той намного ниже.

Эффективность кэш-памяти выражается коэффициентом совпадения, или коэффициентом успеха. Коэффициент совпадения равен отношению количества удачных обращений в кэш к общему количеству обращений. Попадание — это событие, состоящее в том, что важные процессору данные предварительно считываются в кэш из оперативной памяти; иначе говоря, в случае попадания процессор может считывать данные из кэшпамяти. Неудачным обращением в кэш считается такое, при котором контроллер кэша не предусмотрел потребности в данных, находящихся по указанному абсолютному адресу. В таком случае важные данные не были предварительно считаны в кэш-память, поэтому процессор должен отыскать их в более медленной оперативной памяти, а не в быстродействующем кэше. Когда процессор считывает данные из оперативной памяти, ему приходится какое-то время «ждать», поскольку тактовая частота оперативной памяти значительно ниже, чем процессора. Если процессор со встроенной в кристалл кэш-памятью работает на частоте 2 000 МГц (2 ГГц), то продолжительность цикла процессора и интегральной кэш-памяти в этом случае достигнет 0,5 не, в то время как продолжительность цикла оперативной памяти будет в шесть раз больше, т. е. примерно 3 или 6 не для памяти с удвоенной скоростью передачи данных (Double Data Rate — DDR). Таким образом, тактовая частота памяти будет всего лишь 333 МГц. Следовательно, в том случае, когда процессор с тактовой частотой 2 ГГц считывает данные из оперативной памяти, его

рабочая частота уменьшается в шесть раз, что и составляет 333 МГц. Замедление обусловлено периодом ожидания (wait state). Если процессор находится в состоянии ожидания, то на протяжении всего цикла (такта) никакие операции не выполняются; процессор, по существу, ждет, пока важные данные поступят из более медленной оперативной памяти. Поэтому именно кэш-память позволяет сократить количество «несложноев» и повысить быстродействие компьютера в целом.

Чтобы минимизировать время ожидания при считывании процессором данных из медленной оперативной памяти, в современных персональных компьютерах обычно предусмотрены два типа кэш-памяти: кэш-память первого уровня (L1) и кэш-память второго уровня (L2). Кэш-память первого уровня также называется встроенным или внутренним кэшем; он непосредственно встроен в процессор и фактически является частью микросхемы процессора. Во всех процессорах 486 и выше кэш-память первого уровня интегрирована в микросхему процессора. Кэш-память второго уровня называется вторичным или внешним кэшем; он устанавливается вне микросхемы процессора. Первоначально она устанавливалась на системной плате. (Так было во всех компьютерах на основе процессоров 386, 486 и Pentium.) Если кэш-память второго уровня установлена на системной плате, то она работает на ее частоте. В этом случае кэш-память второго уровня обычно находится рядом с разъемом процессора.

Для повышения эффективности в более поздних компьютерах на основе процессоров Pentium Pro, Pentium П/Ш и Athlon кэш-память второго уровня является частью процессора. Конечно же, он внешний по отношению к кристаллу центрального процессора, просто эта отдельная микросхема устанавливается внутри корпуса (картриджа) процессора. Поэтому на системных платах для процессоров Pentium Pro или Pentium II нет никакого кэша.

В последних моделях процессоров Pentium III и Athlon кэш-память второго уровня является частью микросхемы процессора (подобно кэш-памяти первого уровня) и работает на более высоких частотах (на частоте процессора, половинной или трети). В процессорах Itanium для увеличения производительности используется три уровня кэш-памяти.

Место кэш-памяти и оперативной памяти в архитектуре инфраструктуры на основе набора микросхем системной логики Intel 430ТХ и процессора Pentium ММХ отображено на рис. 6.1.

Описание архитектур систем на базе процессора Pentium III можно найти в главе 4, «Системные платы».

В табл. 6.1 приведены параметры кэш-памяти первого и второго уровней в современных компьютерах.

Первоначально кэш-память проектировалась как асинхронная, т. е. не была синхронизирована с шиной процессора и могла работать на другой тактовой частоте. При внедрении набора микросхем системной логики 430FX в начале 1995 года был разработан новый тип синхронной кэш-памяти. Она работает синхронно с шиной процессора, что повышает ее быстродействие и эффективность. В то же время был добавлен режим pipeline burst mode (конвейерный монопольный режим). Он позволил сократить время ожидания за счет уменьшения количества состояний ожидания после первой передачи данных. Использование одного из этих режимов подразумевает наличие другого. Оба режима позволяют повысить производительность компьютера на 20%.

Контроллер кэш-памяти для современной инфраструктуры содержится в микросхеме North Bridge набора микросхем системной логики в PC на основе Pentium и более простых или на плате процессора, как в случае с Pentium Pro, Pentium П/Ш и более новыми системами. Возможности контроллера кэш-памяти предопределяют эффективность и возмож—

считывания использовать1

Рис. 6.1. Структурная схема компьютера на основе процессора Pentium ММХ и набора микросхем Intel 430ТХ

ности кэш-памяти. Важная особенность состоит в том, что большинство контроллеров кэш-памяти имеют ограничение на объем кэшируемой памяти. Часто этот предел может быть очень низок, как в случае набора микросхем системной логики 430ТХ для компьютеров на основе Pentium. Этот набор микросхем может кэшировать данные только первых 64 Мбайт оперативной памяти инфраструктуры. Если установлен больший объем памяти, работа компьютера значительно замедляется, потому что все данные вне первых 64 Мбайт никогда не попадут в кэш и при обращении к ним будут всегда важны все состояния ожидания, определяемые более медленной динамической оперативной памятью. Снижение эффективности зависит от программного обеспечения и от адресов,

считывания использовать2

по которым хранятся данные в памяти. к примеру, 32-разрядные операционные инфраструктуры Windows загружаются сверху вниз, так что если установлена оперативная память емкостью 96 Мбайт, то и операционная система, и прикладные программы будут загружаться в верхние 32 Мбайт, которые не каптируются. Это значительно замедлит работу компьютера в целом. В данном случае можно удалить дополнительную память, чтобы уменьшить емкость до 64 Мбайт. Другими словами, неблагоразумно устанавливать большую емкость памяти, чем позволяет кэшировать набор микросхем системной логики.

Процессор Pentium II и наборы микросхем системной логики более поздних версий не позволяют управлять кэш-памятью второго уровня, так как она встраивается в процессор. Поэтому при использовании Pentium II и процессоров последующих версий устанавливаются определенные ограничения кэширования памяти. Процессоры с внутренним кэшем первого и второго уровней имеют ограничение, равное соответственно 512 Мбайт и 4 Гбайт, а при использовании Pentium III и процессоров последующих версий объем кэшируемой памяти увеличивается до 4 Гбайт. Этот параметр превышает максимальный объем оперативной памяти, которая может поддерживаться тем или другим набором микросхем. Поэтому в подобных системах не рекомендуется устанавливать больший объем памяти, чем позволяет контроллер кэш-памяти. Для того чтобы определить ограничения объема кэшируемой памяти, существующие в системе, обратитесь к технической документации набора микросхем системной логики (при использовании систем класса Pentium, процессоров более ранних версий или систем с кэш-памятью, встроенной в системную плату) либо обратите внимание на характеристики процессора (при использовании систем класса Pentium II, процессоров более современных версий или систем с кэш-памятью, встроенной в процессор).


.

           

 

 

Вся информация собрана из открытых источников. При испльзовании материалов, размещайте ссылку на источник.

Сайт создан в системе uCoz