Компьютеры

Ремонт и upgrade компьютеров своими руками

СОВРЕМЕННЫЕ КОМПЬЮТЕРЫ

 

Если у вас появятся вопросы, не освещенные на нашем сайте, вы можете задать вопрос непосредственно нашим специалистам по электронной почте: upgradecomputer@yandex.ru

 

  

 

После появления UNIVAC темпы эволюции компьютеров заметно ускорились. В первом поколении компьютеров использовались вакуумные лампы, на смену которым пришли меньшие по величиным и более эффективные транзисторы.


От электронных ламп к транзисторам

Современный компьютер представляет собой набор электронных переключателей, которые используются как для представления информации в двоичном коде (в виде двоичных единиц — битов), так и для управления ее обработкой. Эти электронные переключатели могут находиться в двух состояниях — включено и выключено, что позволяет использовать их для хранения двоичной информации.

В первых компьютерах использовались так называемые триоды — вакуумные лампы, изобретенные Ли Де Форестом (Lee De Forest) в 1906 году. Триод состоит из трех

основных элементов, расположенных в стеклянной вакуумной лампе: катода, анода и разделяющей их сетки. При нагревании катода внешний источник питания испускает электроны, которые собираются на аноде. Сетка, расположенная в середине лампы, позволяет управлять потоком электронов. Когда на сетку подается ток отрицательного потенциала, электроны отталкиваются от сетки и притягиваются катодом; при подаче тока положительного потенциала электроны проходят через сетку и улавливаются анодом. Таким образом, изменяя значение потенциала сетки, можно моделировать состояние анода включено/выключено.

К сожалению, вакуумная лампа в качестве переключателя оказалась малоэффективной. Она потребляла много электроэнергии и выделяла большое количество тепла — весьма существенная проблема для вычислительных систем того времени. Вакуумные лампы оказались ненадежными, главным образом из-за постоянного перегрева: в больших системах лампы приходилось менять каждые два часа или даже чаще.

Изобретение транзистора (или полупроводника) явилось одним из наиболее революционных событий эпохи персонального компьютера. В 1947 году инженеры Bell Laboratory Джон Бардин (John Bardeen) и Уолтер Браттейн (Walter Brattain) изобрели транзистор, который был представлен широкой общественности в 1948 году. Несколько месяцев спустя Уильям Шокли (William Shockley), один из сотрудников компании Bell, разработал модель переходного транзистора. В 1956 году эти ученые были удостоены Нобелевской премии в области физики. Транзистор, который, по сути, представляет собой твердотельный электронный переключатель, заменил громоздкую и неудобную вакуумную лампу. Поскольку потребляемая транзисторами мощность незначительна, построенные на их основе компьютеры имели гораздо меньшие размеры и отличались более высоким быстродействием и эффективностью.

Транзисторы состоят главным образом из кремния и германия, а также добавок определенного состава. Проводимость материала зависит от состава введенных примесей и может быть отрицательной, т. е. N-типа, или положительной, Р-типа. Материал обоих типов является проводником, позволяющим электрическому току выбирать любое направление. Однако при соединении материалов разных типов возникает барьер, в результате чего электрический ток определенной полярности течет только в одном направлении. Именно поэтому такой материал называется полупроводником.

Для создания транзистора материалы Р — и N-типа рекомендуется разместить «спиной друг к другу», т. е. поместить пластину одного типа между двумя пластинами другого типа. Если материал средней пластины обладает проводимостью Р-типа, то транзистор будет обозначен как NPN, а если N-типа — то как PNP

В транзисторе NPN одна из пластин N-типа, на которую обычно подается ток отрицательного потенциала, называется эмиттером. Средняя пластина, выполненная из материала Р-типа, называется базой. Вторая пластина полупроводника N-типа называется коллектором.

Транзистор NPN по своей структуре похож на триодную электронную лампу: эмиттер является эквивалентом катода, база эквивалентна управляющей сетке, а коллектор подобен аноду. Изменяя потенциал электрического тока, проходящего через базу, можно управлять потоком электронов, проходящим между эмиттером и коллектором.

По сравнению с электронной лампой транзистор, используемый в качестве переключателя, обладает гораздо большей эффективностью, причем его размеры могут быть поистине микроскопическими. В июне 2001 года разработчики компании Intel представили наименьшие и при этом наиболее быстродействующие кремниевые транзисторы, вели—

чина которых достигает всего лишь 20 нанометров (1 нанометр равен 1 миллиардной части метра). Как ожидается, эти транзисторы впервые появятся в процессорах образца 2007 года, которые будут содержать около миллиарда транзисторов, работающих с тактовой частотой 20 ГГц! Для сравнения: по данным на 2001 год, процессор AMD Athlon ХР содержит более 37,5 млн транзисторов, a Pentium 4 включает около 42 млн транзисторов. Переход с вакуумных электронных ламп на транзисторы положил начало процессу миниатюризации, который продолжается и по сей день. современные модели портативных или карманных компьютеров, работающих на аккумуляторах, имеют более высокую производительность, чем инфраструктуры, занимавшие когда-то целые комнаты и потреблявшие огромное количество электроэнергии.


Интегральные схемы

В 1959 году сотрудники компании Texas Instruments изобрели интегральную схему — полупроводниковое устройство, в котором без проводов соединяется несколько расположенных на одном кристалле транзисторов. В первой интегральной схеме их было всего шесть. Для сравнения заметим, что микропроцессор Pentium Pro состоит из 5,5 млн транзисторов, а интегрированная кэш-память, встроенная в одну из микросхем, содержит еще 32 млн транзисторов. Сегодня во многих интегральных схемах используется несколько миллионов транзисторов.


Первый микропроцессор

В 1998 году компания Intel отпраздновала свое тридцатилетие. Она была основана 18 июля 1968 года Робертом Нойсом (Robert Noyce), Гордоном Муром (Gordon Moore) и Эндрю Гроувом (Andrew Grove). Ученые поставили перед собой вполне определенную цель: создать практичную и доступную полупроводниковую память. Ничего подобного ранее не создавалось, учитывая тот факт, что запоминающее устройство на кремниевых микросхемах стоило по крайней мере в 100 раз дороже обычной для того времени памяти на магнитных сердечниках. Стоимость полупроводниковой памяти достигала одного доллара за бит, в то время как запоминающее устройство на магнитных сердечниках стоило всего лишь около пенни за бит. Вот что сказал Роберт Нойс: «Нам было необходимо сделать лишь одно — уменьшить стоимость в сто раз и тем самым завоевать рынок. Именно этим мы в основном и занимались».

В 1970 году Intel выпустила микросхему памяти емкостью 1 Кбит, намного превысив емкость существующих в то время микросхем. (1 Кбит равен 1024 битам, один байт состоит из 8 битов, т. е. эта микросхема могла хранить всего 128 байт информации, что по современным меркам ничтожно мало). Созданная микросхема, известная как динамическое оперативное запоминающее устройство 1103 (DRAM), стала к концу следующего года наиболее продаваемым полупроводниковым устройством в мире. К этому времени Intel выросла из горстки энтузиастов в компанию, состоящую более чем из 100 служащих.

Японская компания Busicom обратилась к Intel с просьбой разработать набор микросхем для семейства высокоэффективных программируемых калькуляторов. В то далекое время логические микросхемы разрабатывались непосредственно для определенного приложения или программы. Большая часть микросхем, входящих в этот заказ, была предназначена для выполнения строго определенного круга задач, поэтому ни одна из них не могла получить широкого распространения.

Первоначальная конструкция калькулятора компании Busicom предусматривала по крайней мере 12 микросхем различных типов. Инженер компании Intel Тед Хофф (Ted Hofl) отклонил данную концепцию и вместо этого разработал однокристальное логическое устройство, получающее команды приложения из полупроводниковой памяти. Этот центральный процессор управлялся программой, которая позволяла адаптировать функции микросхемы для выполнения поступающих задач. Микросхема была универсальной по своей природе, т. е. ее применение не ограничивалось калькулятором. Логические же модули других конструкций имели только одно назначение и строго определенный набор встроенных команд. Новая микросхема могла считывать из памяти набор команд, которые и использовались для управления ее функциями. Тед Хофф стремился разработать вычислительное устройство, размещенное в одной микросхеме и выполняющее самые разные функции в зависимости от получаемых команд.

С этой микросхемой была связана одна проблема: все права на нее принадлежали исключительно компании Busicom. Тед Хофф и другие разработчики понимали, что данная конструкция имеет практически неограниченное применение, позволяя преобразовывать «несуразные» машины в настоящие интеллектуальные инфраструктуры. Они настояли на том, чтобы Intel выкупила права на созданную микросхему. Основатели Intel Гордон Мур и Роберт Нойс всячески поддерживали создание новой микросхемы, в то время как другие сотрудники компании были обеспокоены тем, что это нанесет удар по основному бизнесу Intel — продаже оперативной памяти. Каждый микрокомпьютер Intel, состоящий из четырех микросхем, содержал в те времена по два модуля памяти. Вот что сказал бывший коммерческий директор Intel: «Вначале я относился к этой архитектуре, как к способу выгодной реализации большого количества микросхем памяти, и именно в это направление мы собирались вкладывать дополнительные средства».

Компания Intel предложила Busicom вернуть отданные ею за лицензию 60 тыс. долларов в обмен на право распоряжаться разработанной микросхемой. Японская фирма, находящаяся в тяжелом финансовом положении, согласилась. В это время никто из производителей, равно как и сама Intel, не смогли в полной мере оценить важность этого события. Как оказалось впоследствии, именно эта сделка определила будущее Intel. В 1971 году появился первый 4-разрядный микрокомпьютерный набор 4004 (термин микропроцессор появился значительно позднее). Микросхема размером с ноготь большого пальца содержала 2 300 транзисторов, стоила 200 долларов и по своим параметрам была сопоставима с первой электронно-вычислительной машиной ENIAC. Как уже отмечалось, в системе ENIAC, созданной в 1946 году, было около 18 тыс. вакуумных электронных ламп; она занимала 3 000 кубических футов (85 кубических метров). Микропроцессор 4004 выполнял 60 тыс. операций в секунду, что являлось на то время невероятным достижением.

В 1972 году был выпущен преемник 4004–8-разрядный микропроцессор 8008. А в 1981 году семейство процессоров Intel пополнилось новой 16-разрядной моделью 8086 и 8-разрядной 8088. Эти процессоры получили в течение всего лишь одного года около 2 500 наград за технологические новшества и достижения в сфере вычислительных систем. В число призеров вошла и одна из разработок IBM, ставшая впоследствии первым персональным компьютером.

В 1982 году Intel представила микропроцессор 286, содержащий 134 тыс. транзисторов. По эффективности он превосходил другие 16-разрядные процессоры того времени примерно в три раза. Благодаря концепции внутрикристальной памяти 286 стал первым микропроцессором, совместимым со своими предшественниками. Этот качественно

новый микропроцессор был затем использован в эпохальном компьютере РС-АТ компании IBM.

В 1985 году появился 32-разрядный процессор Intel 386. Он содержал 275 тыс. транзисторов и выполнял более 5 млн операций в секунду (Million Instruction Per Second — MIPS). Компьютер DESKPRO 386 компании Compaq был первым ПК, созданным на базе нового микропроцессора.

Следующим из семейства Intel стал процессор 486, появившийся в 1989 году. Этот процессор содержал уже 1,2 млн транзисторов и первый встроенный сопроцессор. Он работал в 50 раз быстрее процессора 4004, и его производительность была эквивалентна производительности мощных мэйнфреймов.

В 1993 году Intel представила первый процессор Pentium, производительность того выросла в пять раз по сравнению с семейством Intel 486. Pentium содержал 3,1 млн транзисторов и выполнял до 90 млн операций в секунду, что примерно в 1 500 раз выше быстродействия процессора 4004.

Замечание

Основанием для перехода Intel от нумерации процессоров (386/486) к использованию различных названий (Pentium/Pentium Pro) послужил тот факт, что числовое значение не позволяет должным образом обеспечить безопасность зарегистрированной торговой марки и избежать использования того же номера для нумерации совершенно идентичной микросхемы, разработанной конкурентами.

Процессор семейства Р6, называемый Pentium Pro, появился на свет в 1995 году. Он содержал 5,5 млн транзисторов и являлся первым процессором, кэш-память второго уровня того была размещена прямо на кристалле, что позволяло значительно повысить его быстродействие. Даже в наше время процессор Pentium Pro, выполняющий до 300 млн команд в секунду, все еще используется для многопроцессорных серверов и высокоэффективных рабочих станций.

Компания Intel пересмотрела архитектуру Р6 (Pentium Pro) и в мае 1997 года представила процессор Pentium П. Он содержит 7,5 млн транзисторов, упакованных, в отличие от традиционного процессора, в картридж, что позволило разместить кэш-память L2 непосредственно в модуле процессора. В апреле 1998 года семейство Pentium II пополнилось дешевым процессором Celeron, используемым в домашних ПК, и профессиональным процессором Pentium II Хеоп, предназначенным для серверов и рабочих станций. В 1999 году Intel выпустила процессор Pentium III, который представлял собой, по сути, Pentium II, содержащий инструкции SSE (Streaming SIMD Extensions).

В то время как процессор Pentium стремительно занимал доминирующее положение на рынке, компания AMD приобрела компанию NexGen, работавшую над процессором Nx686. Результатом слияния компаний явился процессор AMD Кб. Этот процессор как в аппаратном, так и программном отношении был совместим с процессором Pentium, т. е. устанавливался в гнездо Socket 7 и выполнял те же программы. AMD продолжила разработку более быстрых версий процессора Кб и завоевала значительную часть рынка ПК среднего класса.

В 1998 году Intel впервые интегрировала кэш-память второго уровня непосредственно в кристалл процессора (работающего на полной тактовой частоте ядра процессора), что позволило существенно увеличить его быстродействие. Для этого вначале был использован процессор второго поколения Celeron (созданный на основе ядра Pentium II), а также

кристалл Pentium ПРЕ (с расширенными вычислительными возможностями), применяемый только в портативных системах. Первым процессором для настольных вычислительных машин старшей модели, содержащим встроенную кэш-память второго уровня и работающим с полной частотой ядра, стал процессор второго поколения Pentium III (созданный на основе ядра Coppermine), представленный в конце 1999 года. После этого практически все основные изготовители процессоров также начали встраивать кэшпамять второго уровня в кристалл процессора, причем эта тенденция сохраняется и по сей день.

В 1999 году AMD представила процессор Athlon, который позволил ей конкурировать с Intel на рынке высокоскоростных настольных ПК практически на равных. Этот процессор оказался весьма удачным, и компания Intel получила в его лице достойного соперника в области наиболее производительных систем.

Следующий, 2000-й год ознаменовался появлением на рынке новых разработок этих компаний. Так, к примеру, AMD впервые представила процессоры Athlon Thunderbird и Duron. Процессор Duron, по существу, идентичен процессору Athlon и отличается от него только меньшим объемом кэш-памяти второго уровня; Thunderbird, в свою очередь, использует интегрированную кэш-память, что позволяет значительно повысить его быстродействие. Duron представляет собой более дешевую версию процессора Athlon, которая была разработана в первую очередь для того, чтобы составить достойную конкуренцию недорогим процессорам Celeron, созданным в Intel.

Компания Intel в 2000 году представила Pentium 4, новейший процессор из семейства IA-32. Компания также анонсировала процессор Itanium (кодовое имя Merced), который стал первым представителем 64-разрядных процессоров Intel (IA-64). Благодаря этому процессору в недалеком будущем появятся совершенно новые операционные инфраструктуры и приложения, которые, тем не менее, будут совместимы с 32-разрядным программным обеспечением.

В 2000 году произошло еще одно знаменательное событие, имеющее историческое значение: компании Intel и AMD пересекли барьер в 1 ГГц, который до того времени многим казался непреодолимым.

В 2001 году Intel представила новую версию процессора Pentium 4 с рабочей частотой 2 ГГц, который стал первым процессором ПК, достигшим подобного быстродействия. Кроме этого, компанией AMD был представлен процессор Athlon ХР, созданный на основе нового ядра Palomino, а также Athlon МР, разработанный специально для многопроцессорных серверных систем. В течение 2001 года AMD и Intel продолжили работу над повышением быстродействия разрабатываемых микросхем и улучшением параметров существующих процессоров Pentium Ill/Celeron, Pentium 4 и Athlon/Duron. В частности, в 2002 году вышли процессоры Pentium 4 с рабочей частотой 3 ГГц и Athlon ХР 2800+ с частотой шины 333 МГц.


.

           

 

 

Вся информация собрана из открытых источников. При испльзовании материалов, размещайте ссылку на источник.

Сайт создан в системе uCoz