Ремонт и upgrade компьютеров своими рукамиКОМПОНЕНТЫ СИСТЕМНОЙ ПЛАТЫ |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Если у вас появятся вопросы, не освещенные на нашем сайте, вы можете задать вопрос непосредственно нашим специалистам по электронной почте: upgradecomputer@yandex.ru
|
В современную системную плату встроены такие компоненты, как гнезда процессоров, разъемы и микросхемы. Самые современные системные платы содержат следующие компоненты: ■ гнездо для процессора; ■ набор микросхем системной логики (компоненты North/South Bridge или Hub); ■ микросхема Super I/O; ■ базовая система ввода-вывода (ROM BIOS); ■ гнезда модулей памяти SIMM/DIMM/RIMM; ■ разъемы шин ISA/PCI/AGP; ■ разъем AMR (Audio Modem Riser); ■ разъем CNR (Communications and Networking Riser); ■ преобразователь напряжения для центрального процессора; ■ батарея. Некоторые из системных плат также включают в себя интегрированные аудио — и видеоадаптеры, сетевой и SCSI-интерфейс, разъемы AMR (Audio Modem Riser) и CNR (Communications and Networking Riser), а также другие элементы, в зависимости от типа системной платы. Все стандартные компоненты обсуждаются далее в главе.Гнезда для процессоров Процессоры можно устанавливать в гнезда типа Socket или Slot. Процессоры, разрабатываемые Intel (начиная с 486-го), пользователь может устанавливать и заменять самостоятельно. Были разработаны стандарты для гнезд типа Socket, в которые можно установить различные модели конкретного процессора. Каждый тип гнезда Socket или Slot имеет свой номер. Любая системная плата содержит гнездо типа Socket или типа Slot; по номеру можно точно определить, какие типы процессоров могут быть установлены в данное гнездо. Более подробно гнезда процессоров описываются в главе 3, «Типы и спецификации микропроцессоров». Гнезда для процессоров до 486-го не были пронумерованы; их взаимозаменяемость ограниченна. В табл. 4.3 указаны микросхемы, которые можно установить в различные гнезда типа Socket или Slot. Изначально процессоры всех типов устанавливались в гнезда (или впаивались непосредственно в системную плату). С появлением Pentium II и первых версий процессоров Athlon, компании Intel и AMD перешли к другой конструкции, разработанной вследствие того, что в процессоры была включена встроенная кэш-память второго уровня, приобретаемая в виде отдельных микросхем памяти Static RAM (SRAM) у сторонних производителей. Таким образом, процессор содержал в себе уже несколько различных микросхем, установленных на дочерней плате, которая, в свою очередь, была подключена в разъем системной платы. Основным недостатком этой весьма неплохой конструкции являются дополнительные расходы, связанные с приобретением микросхем кэш-памяти, дочерней платы, разъема, корпуса или упаковки, механизмов поддержки и подставок для установки процессора и теплоотвода. В результате себестоимость процессора, монтируемого на отдельной плате, оказалась значительно выше по сравнению с предшествующими «гнездовыми» версиями процессоров. С появлением второго поколения процессоров Celeron, компания Intel начала интегрировать кэш-память второго уровня непосредственно в кристалл процессора, не добавляя в схему процессора каких-либо дополнительных микросхем. Второе поколение процессоров Pentium III (кодовое имя Coppermine), процессоры К6–3, Duron (кодовое имя Spitfire) и второе поколение процессоров Athlon (кодовое имя Thunderbird) компании AMD (ранние версии процессора Thunderbird Athlon имеют конфигурацию Slot А) также содержат встроенную кэш-память второго уровня. Появление встроенного кэша позволило вернуться к однокристальной конструкции процессора, отказавшись от его установки на отдельной плате. В результате интеграции кэш-памяти второго уровня производители вернулись к гнездовой конструкции процессора, которая сохранится, вероятно, в течение обозримого будущего. В настоящее время гнездовая конструкция процессоров используется практически во всех современных моделях. Кроме того, интеграция кэш-памяти позволила повысить рабочую частоту кэша второго уровня с половины или одной трети до полной тактовой частоты процессора. Особенностью процессора Itanium является корпус, содержащий кэш-память третьего уровня, также устанавливаемый в гнездо системной платы. Таблица 4.3. Технические данные гнезд процессоров
Наборы микросхем системной логики Современные системные платы невозможно представить без микросхем системной логики. Набор микросхем подобен системной плате. Другими словами, две любые платы с одинаковым набором микросхем функционально идентичны. Набор микросхем системной логики включает в себя интерфейс шины процессора (которая называется также Front-Side Bus — FSB), контроллеры памяти, контроллеры шины, контроллеры ввода-вывода и т. п. Все схемы системной платы также содержатся в наборе микросхем. Если сравнивать процессор компьютера с двигателем автомобиля, то аналогом набора микросхем является, скорее всего, шасси. Оно представляет собой металлический каркас, служащий для установки двигателя и выполняющий роль промежуточного звена между двигателем и внешним миром. Набор микросхем — это рама, подвеска, рулевой механизм, колеса и шины, коробка передач, карданный вал, дифференциал и тормоза. Шасси автомобиля представляет собой механизм, преобразующий энергию двигателя в поступательное движение транспортного средства. Набор микросхем, в свою очередь, является соединением процессора с различными компонентами компьютера. Процессор не может взаимодействовать с памятью, платами адаптера и различными устройствами без помощи наборов микросхем. Если воспользоваться медицинской терминологией и сравнить процессор с головным мозгом, то набор микросхем системной логики по праву займет место позвоночника и центральной нервной инфраструктуры. Набор микросхем управляет интерфейсом или соединениями процессора с различными компонентами компьютера. Поэтому он определяет в конечном счете тип и быстродействие используемого процессора, рабочую частоту шины, скорость, тип и объем памяти. В сущности, набор микросхем относится к числу наиболее важных компонентов инфраструктуры, даже, наверное, более важных, чем процессор. Мне приходилось видеть инфраструктуры с мощными процессорами, которые проигрывали в быстродействии системам, содержащим процессоры меньшей частоты, но более функциональные наборы микросхем. Во время соревнований опытный гонщик часто побеждает не за счет высокой скорости, а за счет умелого маневрирования. При компоновке инфраструктуры я бы начинал в первую очередь с набора микросхем системной логики, так как именно от его выбора зависит эффективность процессора, модулей памяти, устройств ввода-вывода, а также разнообразные возможности расширения. Дополнительные сведения Информация об эволюции микросхем первых системных плат IBM PC представлена на прилагаемом к статье компакт-диске. .
Вся информация собрана из открытых источников. При испльзовании материалов, размещайте ссылку на источник. |