Компьютеры

Ремонт и upgrade компьютеров своими руками

КОМПЬЮТЕРНАЯ ПАМЯТЬ RDRAM

 

Если у вас появятся вопросы, не освещенные на нашем сайте, вы можете задать вопрос непосредственно нашим специалистам по электронной почте: upgradecomputer@yandex.ru

 

  

 

Радикально новый тип памяти RDRAM, или Rambus DRAM, используется в высокопроизводительных персональных компьютерах с 1999 года. Такая память непосредственно поддерживается в наборах микросхем системной логики. Аналогичный тип памяти уже использовался в игровых приставках — в популярной модели Nintendo 64.

Обычные типы памяти (FPM/RDO и SDRAM) иногда называют устройствами с широким каналом. Ширина канала памяти равна ширине шины данных процессора (в системах Pentium — 64 бит). Максимальная производительность памяти SDRAM в исполнении DIMM составляет 100x8 (частота х количество передаваемых данных за один такт), или 800 Мбайт/с.

С другой стороны, память RDRAM является устройством с узким каналом передачи данных. Количество данных, передаваемых за один такт, достигает только 16 бит (2 байт), не считая двух дополнительных бит контроля по четности, однако скорость передачи данных гораздо выше. В настоящее время происходит постепенный переход от параллельной конструкции модулей памяти к последовательной, что напоминает процесс, происходивший в свое время с шинами персонального компьютера.

Одноканальные 16-разрядные модули памяти RIMM работали вначале с частотой 800 МГц, благодаря чему общая пропускная способность достигала величины 800x2, или 1,6 Гбайт/с, для одного канала, что совпадает с характеристиками памяти PC 1600 DDR-SDRAM. В первых системах Pentium 4 использовались оба банка памяти одновременно, создавая двухканальную структуру с пропускной способностью 3,2 Гбайт/с, что соответствует быстродействию шины оригинального процессора Pentium 4. Одной из особенностей конструкции RDRAM является уменьшенное время ожидания между передачами данных. Это связано с циклически повторяющимися передачами, выполняемыми одновременно и только в одном направлении.

системе содержит4

Рис. 6.3. Отношение между тактовым сигналом и циклами передачи данных памяти RDRAM

Современные модули памяти RIMM работают не только с исходной частотой 800 МГц, но и с частотами 1066 и 1200 МГц и существуют как в одноканальных 16-разрядных, так и в многоканальных 32– и 64-разрядных версиях, пропускная способность которых превышает 9,6 Гбайт/с.

Один канал памяти Rambus может поддерживать до 32 отдельных устройств RDRAM (микросхем RDRAM), которые устанавливаются в модули RIMM (Rambus Inline Memory Modules). Вся работа с памятью организуется между контроллером памяти и отдельным (а не всеми) устройством. Каждые 10 не (100 МГц) одна микросхема RDRAM может передавать 16 байт. RDRAM работает быстрее SDRAM приблизительно в три раза.

Для повышения производительности было предложено еще одно конструктивное решение: передача управляющей информации отделена от передачи данных по шине. Для этого предусмотрены независимые схемы управления, а на адресной шине выделены две подгруппы контактов: для команд выбора строки и столбца и для передачи информации по шине данных шириной 2 байта. Шина памяти работает на частоте 400 МГц; однако данные передаются по фронтам тактового сигнала, т. е. дважды в тактовом импульсе. Правая граница тактового импульса называется четным циклом, а левая — нечетным. Синхронизация осуществляется с помощью передачи пакетов данных в начале четного цикла. Максимальное время ожидания составляет 2,5 не.

На рис. 6.3 отображено отношение между тактовым сигналом и циклами передачи данных. Пять полных циклов тактового сигнала соответствуют десяти циклам данных.

Архитектура RDRAM также поддерживает множественные чередующиеся транзакции, одновременно выполняемые в отдельных временных областях. Следовательно, передача данных может быть осуществлена до завершения предыдущей передачи.

Не менее важно то, что память RDRAM потребляет мало энергии. Напряжение питания модулей памяти RIMM, как и устройств RDRAM, достигает только 2,5 В. Напряжение низковольтного сигнала изменяется от 1,0 до 1,8 В, т. е. перепад напряжений равен 0,8 В. Кроме того, RDRAM имеет четыре режима пониженного потребления энергии и может автоматически переходить в режим ожидания на завершающей стадии транзакции, что позволяет еще больше экономить потребляемую мощность.

Как упоминалось ранее, микросхемы RDRAM устанавливаются в модули RIMM (рис. 6.4), по размеру и форме подобные DIMM, но не взаимозаменяемые. Существуют модули памяти RIMM, объем которых достигает 1 Гбайт и более. Эти модули могут устанавливаться в системе по одному, поскольку каждый из них технически представляет собой сразу несколько банков памяти. Модули RIMM устанавливаются попарно только

системе содержит5

Рис. 6.4. Модуль RIMM (184-контактный)

в том случае, если существующая системная плата поддерживает двухканальные модули RDRAM, а также если в системе применяются 16-разрядные модули RIMM.

Контроллер памяти RDRAM с одним каналом Rambus позволяет установить не более трех модулей RIMM. Тем не менее в большинстве системных плат возможно использование только двух модулей на один канал, что позволяет избежать проблем с искажением сигнала.

Существующие модули памяти RIMM можно разделить по быстродействию на три основные подгруппы, каждая из которых содержит три версии с различной шириной шины. Модули памяти 16-разрядных версий обычно используются в двухканальной среде, поэтому их рекомендуется устанавливать попарно, причем каждая пара модулей должна быть установлена в отдельный набор разъемов. Каждый набор разъемов RIMM на подобных платах является отдельным каналом. Модули памяти 32– и 64-разрядных версий включают в себя сразу несколько каналов, что позволяет устанавливать их отдельно, без необходимости подбора согласованных пар. Характеристики различных типов модулей RDRAM приведены в табл. 6.7.

Компания Intel сконцентрировала свои усилия на внедрении памяти Rambus, что, казалось, позволило бы достигнуть значительного успеха на рынке. К сожалению, задержки в выпуске соответствующих наборов микросхем, возникшие из-за технических сложностей конструкции памяти RDRAM, послужили причиной увеличения стоимости модулей памяти RIMM в три или более раз по сравнению с модулями DIMM того же объема. В последнее время стоимость модулей RIMM памяти RDRAM снизилась до уровня DDR SDRAM, благодаря чему модули RIMM, имеющие более высокую эффективность, стали использоваться гораздо чаще.

Замечание

К огорчению для производителей микросхем памяти, компания Rambus получила патенты на стандартную память и конструкции DDR SDRAM. Поэтому, независимо от того, производят ли эти компании память SDRAM, DDR или RDRAM, им приходится выплачивать определенную сумму компании Rambus в качестве создательского гонорара. Судебные дела, возбужденные компаниями, оспаривающими эти патенты, заметных результатов не принесли. Прецеденты, приведшие к судебному разбирательству, являются, по сути, требованиями аннулирования патентов и прав компании Rambus на память стандартов DDR и SDRAM.

Таблица 6.7. Типы и пропускная способность модулей RDRAM

RIMM1200 RDRAM*

16

300

2

1200

RIMM1400 RDRAM*

16

350

2

1400

RIMM1600 RDRAM

16

400

2

1600

RIMM2100 RDRAM

16

533

2

2 133

RIMM2400 RDRAM

16

600

2

2 400

RIMM3200 RDRAM

32

400

2

3 200

RIMM4200 RDRAM

32

533

2

4 266

RIMM4800 RDRAM

32

600

2

4 800

RIMM6400 RDRAM

64

400

2

6400

RIMM8500 RDRAM

64

533

2

8 533

RIMM9600 RDRAM

64

600

2

9 600

Устаревшие стандарты.

Основное требование, предъявляемое к памяти, состоит в том, что пропускная способность шины памяти должна соответствовать пропускной способности шины процессора. В этом отношении модули RIMM памяти RDRAM являются наиболее подходящим вариантом для систем, созданных на базе более быстрых процессоров Intel Pentium 4.


.

           

 

 

Вся информация собрана из открытых источников. При испльзовании материалов, размещайте ссылку на источник.

Сайт создан в системе uCoz